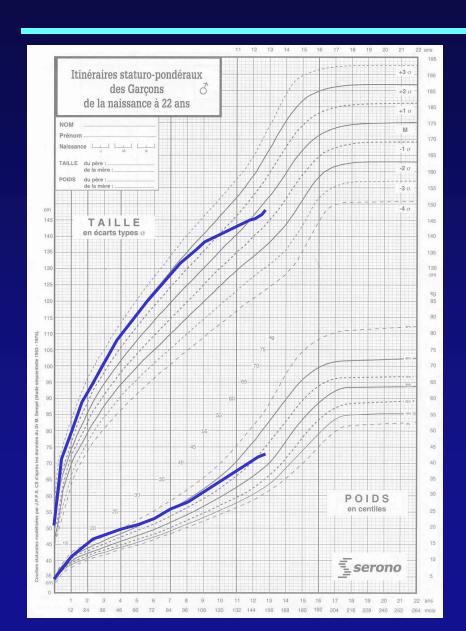

Maladie de Cushing et transition

Dr Laurence Guignat laurence.guignat@cch.aphp.fr

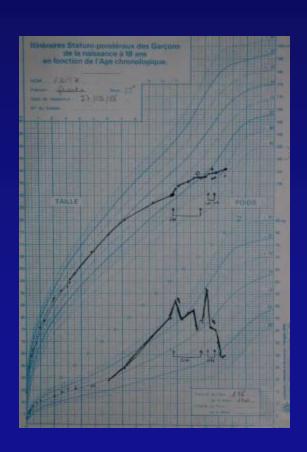
Centre de référence des pathologies de la surrénale Hôpital Cochin 75014 Paris Dr Agnès Linglart agnes.linglart@bct.aphp.fr

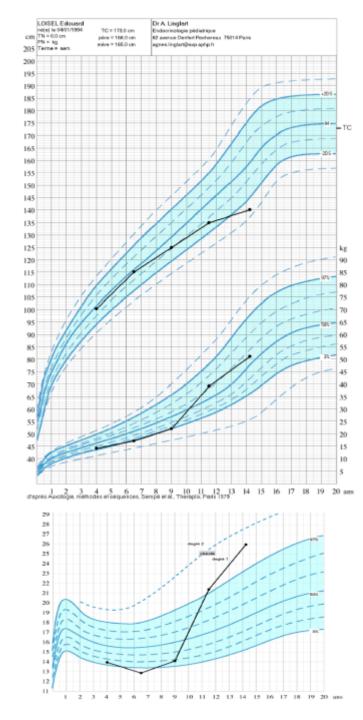
Endocrino-pédiatrie Hôpital Bicêtre

- Particularités du diagnostic de la maladie de Cushing à l'adolescence
- 2. Puberté
- 3. Croissance
- 4. Contraception

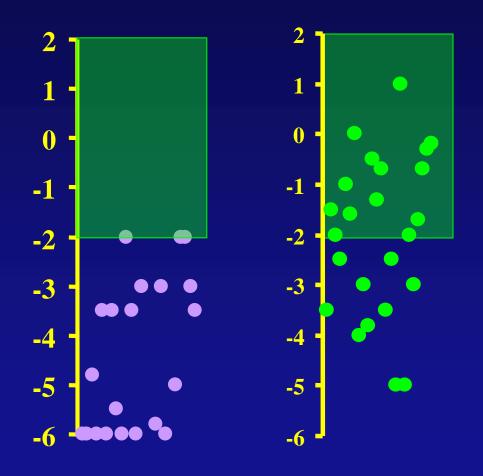


21


Aurelia, 16.5 ans, consulte pour avis sur sa taille


- •Aménorrhée primaire
- Acné
- •Age osseux: 15 ans

		Nb de patients	Age au diagnostic (années)	Durée des symptômes (années)	Retard statural	Surpoids	Retard pubertaire ou aménorrhée
Magiakou et al.	1994	50	14	3	83%	90%	-
Dyer et al.	1994	36	<16		58%		5 (14%)
Leinung et al.	1995	22	15,5	0.4 - 10		100	
Devoe et al.	1997	42	13.1	2.2	84%	92%	60%
Mathivon et al.	1997	20	12,1	3	90%	75%	-
Lebrethon et al.	2000	10	12.9	>2 ans	40%	80%	_
Savage et al.	2001	17	13	2.8	71%	100%	pseudo-puberté précoce
Storr et al.	2005	25	12,5	2.3			_
Leong et al.	2007	14	,				
Batista et al.	2007	105	12	-	-	85%	-
SVP	2009	28	12,3	3,03 (0,7-7)	55%	68%	15/16



Régime restrictif

		Nb de patients	Age au diagnostic (années)	Durée des symptômes (années)	Retard statural	Surpoids	Retard pubertaire ou aménorrhée
Magiakou et al.	1994	50	14	3	83%	90%	-
Dyer et al.	1994	36	<16		58%		5 (14%)
Leinung et al.	1995	22	15,5	0.4 - 10	_	_	-
Devoe et al.	1997	42	13.1	2.2	84%	92%	60%
Mathivon et al.	1997	20	12,1	3	90%	75%	_
Lebrethon et al.	2000	10	12.9	>2 ans	40%	80%	_
Savage et al.	2001	17	13	2.8	71%	100%	pseudo-puberté précoce
Storr et al.	2005	25	12,5	2.3	_		_
Leong et al.	2007	14					
Batista et al.	2007	105	12	-	-	85%	-
SVP	2007	7 27	12,3	3,03 (0,7-7)	50%	66%	14/15

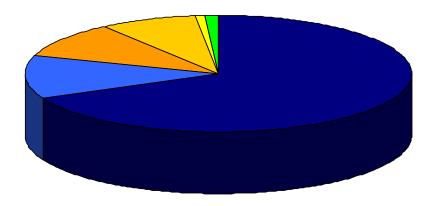
Vitesse de croissance (DS) Taille (DS)

Poids / PIT

Série SVP, 28 patients

• Vitesse de croissance: 100 % n=28

• Surpoids: 68 % n=28


• Retard pubertaire, aménorrhée 15/16 n=16

• Signes cutanés: 28 % n=28

• Tb thymiques 80%, aspecifiques

Diagnostic de la maladie de cushing

Syndrome de Cushing, Orth et al. 630 patients

Syndrome de Cushing, Magiakou et al. 59 patients

- •Très grande majorité de syndrome de Cushing ACTHdépendants
- •La démarche diagnostique est la même que chez l'adulte

CLINICAL STUDY

Comparisons in the epidemiology, diagnostic features and cure rate by transsphenoidal surgery between paediatric and adult-onset Cushing's disease

H L Storr¹, K I Alexandraki², L Martin¹, A M Isidori², G A Kaltsas², J P Monson², G M Besser², M Matson³, J Evanson³, F Afshar⁴, I Sabin⁴, M O Savage^{1,*} and A B Grossman^{2,*}

Departments of ¹Paediatric Endocrinology, ²Endocrinology, ³Radiology and ⁴Neurosurgery, Barts and The London School of Medicine and Dentistry, London EC1A 7BE, UK

- 41 enfants, âge moyen 12.3+/-3.5 ans [5.7-17.8] versus 183 adultes, âge moyen 40+/-13 ans [18.0-95.0]
- · Spécificités:
 - Prédominance masculine (63%) versus 21% chez les adultes
 - Clinique:
 - · Cassure de la courbe de croissance
 - Prise de poids quasi-constante versus 65% chez les adultes
 - · Fatigue et labilité émotionnelle/dépression + fréquente
 - · HTA moins fréquente
 - Biologie : augmentation du cortisol sérique/CRH plus franche (105% versus 54% en moyenne)
 - IRM: normale ou microadénome, seulement 2 % de macroadénomes versus 15% chez adultes

Cushing ACTH dépendant, les causes

TABLE 1. Tumor types, imaging, treatment, and outcome

Case no.	Age (yr)	Year at diagnosis	Sex	EAS tumors	Imaging studies	Treatment	Outcome
1	16	2005	М	2 Typical BC (3 and 12 mm), 1 LNM, pleural infiltration	CT-, SRS-, FDG+, F- DOPA+; severe bronchiectasis impeding CT	KC followed by surgery	Alive after 3 yr of follow-up; no recurrence
2	19	1996	F	Typical BC (28 mm), 1 LNM		MTP followed by surgery	Alive after 14 yr of follow-up; recurrence 8 and 14 yr after initial surgery
3	15	1995	М	Typical BC (25 mm), LNM	CT-, SRS+, MRI+; SRS detected EAS tumor overlooked on initial CT	Surgery	Alive after 4 yr of follow-up
4	17	1995	F	Typical BC" (8 mm), LNM	CT+, SRS-; first surgery at age 14 ^a	KC + mitotane, followed by surgery	Alive after 16 yr of follow-up;
						M	ore et al.
						C	ushing ed
5	18	1988	M	Atypical BC (20 mm), no metastasis	CT—; occult tumor identified using MRI after 4 yr	KC + mitotal bilateral adrenalectomy; surgery when tumor identified	hez les a
6	19	2007	F	Typical carcinoid tumor in 2 lymph nodes (4 and 10 mm)	CT-, SRS +; SRS detected EAS tumor overlooked on initial CT	KC + MTP + mitotane, followed by	Alive after 3 yr of follow-up; no recurrence
7	17	1985	F	Thymic endocrine carcinoma with large cells (35 mm), LNM, local infiltration	CT+	surgery Surgery + RXT, then mitotane + chemotherapy when recurrence	Recurrence with pleural and pericardial infiltration after 3 yr; death after 4 yr of follow-up
8	15	2007	F	Pleural Ewing's sarcoma (280 mm); no metastasis	CT+	Cabergoline + chemotherapy, followed by surgery	Alive after 2 yr of follow-up
9	17	2005	F	Nested stromal epithelial tumor of the liver (132 mm); no metastasis	CT+, FDG+, SRS-	Surgery	Alive after 4 yr of follow-up; no recurrence
10	20	2000	М	Atypical thymic carcinoid (size ND), 1 LNM	CT—, SRS—; occult tumor identified using CT after 3 months		No recurrence after 9 yr of follow-up

Cushing ACTH dépendant, les causes

AIP, le gene de susceptibilité aux adenomes hypophysaires

Chanson et coll.

443 adenomes, 16 mutations AIP, 3 adenomes ACTH dépendants (13-21 et 31 ans)

Gène impliqué dans 3 -4% des adenomes GH (sujets jeunes)

Proteine-proteine interaction

Suppresseur de tumeur??

1ère étape

Suspicion clinique

corticoïdes de synthèse?

cortisolurie / 24h 2 à 3 recueils et/ou cortisolémie et/ou cortisol salivaire 8 h / DEX 1mg 0h et/ou
Cortisol salivaire coucher 2 à 3 recueils

1ère étape

Suspicion clinique

corticoïdes de synthèse?

cortisolurie / 24h 2 à 3 recueils et/ou cortisolémie et/ou cortisol salivaire 8 h / DEX 1mg 0h et/ou
Cortisol salivaire coucher 2 à 3 recueils

Résultats Normaux :
Pas de Cushing ou Cushing intermittent ?
Répéter examens 3 à 6 mois après

Suspicion clinique

corticoïdes de synthèse?

```
cortisolurie / 24h 2 à 3 recueils
```

cortisolémie et/ou cortisol salivaire 8 h / DEX 1mg Oh

et/ou

et/ou

Cortisol salivaire coucher 2 à 3 recueils

- **★** cortisolurie / 24h
- et/ou
- 7 F > 18 ng/ml (50 nmol/l) et/ou F salive 8h / DEX 1mg 0h et/ou
- **→** F salive coucher

2ème étape

2ème étape

Confirmation: Eliminer pseudoCushing Eliminer pb_« technique »

Répétition tests 1ère ligne DEX 2 mg/j x 2 jours cycle nycthéméral F et/ou F salive test Minirin test DEX- CRH voire test CRH

3^{ème} étape

ACTH 2 valeurs

+/- test CRH

test freinage fort à l

scanner surrénalien

lexaméthasone

ACTH dépendant

Au moins 1 valeur > 15 - 20 pg/ml (3,3 - 4,4 pmol/l)

3ème étape ACTH 2 valeurs +/- test CRH test freinage fort à la dexaméthasone scanner surrénalien

ACTH dépendant

	MC	SEA
Test freinage fort	+	-
Test CRH	+	-
Test desmopressine	+	-
Marqueurs tumoraux	-	Parfois +
IRM hypophysaire	+50- 70%	incidentalome s
TDM CTAP	-	Parfois +
scintigraphies	-	Parfois +
CRSDT	Gnadiant	

3^{ème} étape

+/- test CRH

test freinage fort à la dex

scanner surrénalien

2 valeurs < 5 - 10 pg/ml (1,1 -2,2 pmol/l)

ACTH indépendant

Adénome corticosurrénalien:

hypercortisolisme pur, image typique (TDM+/-IRM)

Corticosurrénalome:

hyperandrogénie associée, Image suspecte (TDM+/-IRM), pouvant fixer au PET-scan FDG

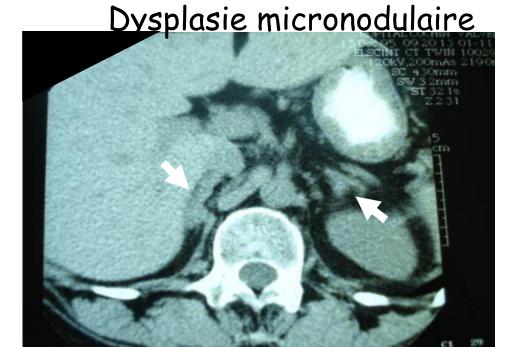
AIMAH:

Récepteurs illégitimes, Syndrome de McCune-Albright Dysplasie micronodulaire : Surrénales normales au TDM Signes associés complexe Carney Étude génétique Adénome corticosurrénalien

Corticosurrénalome

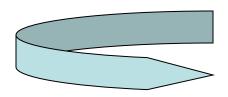
Int. 11
Ar. Ar. Sci 16(00)
DROY 27 3 on
18 bpn
tre 30%

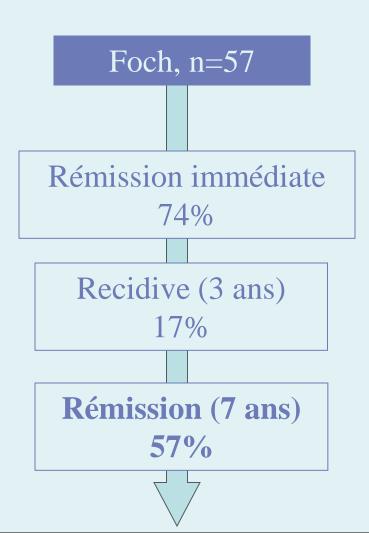

ROT


ET 21
R

NONE
TRESS 266
EC 1/1 41 7646

NCARCIAC
10/32264
10/132264


Hyperplasie macronodulaire


Traitement, quels objectifs et quelles options?

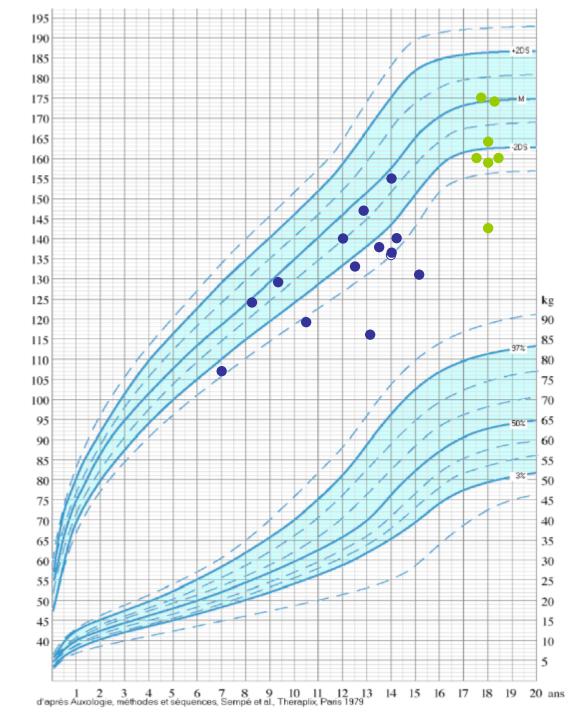
- 1. Reprise de la croissance
- 2. Développement pubertaire
- 3. Long terme: masse osseuse, syndrome métabolique, capacité de reproduction

Contrôle de la sécrétion cortisolique

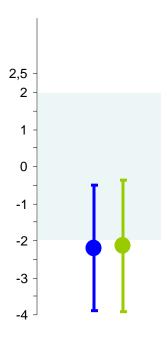
CTS, premier traitement

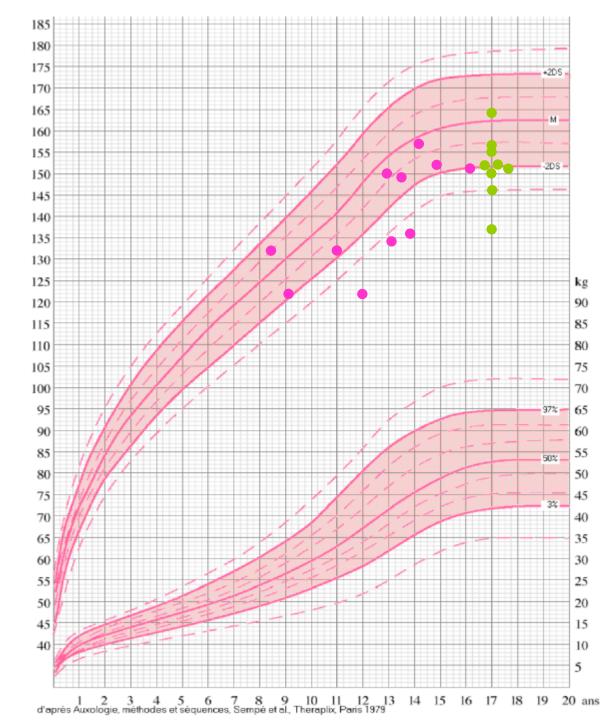
Traitement médical

Echec Récidive

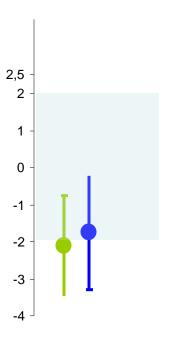

⇒ d'emblée quand le microadénome n'est pas visible

Ketoconazole 600 à 1200 mg/j


- •Hépatite cytolytique
- Échappement
- •Durée moyenne de trt: 1.2 ans

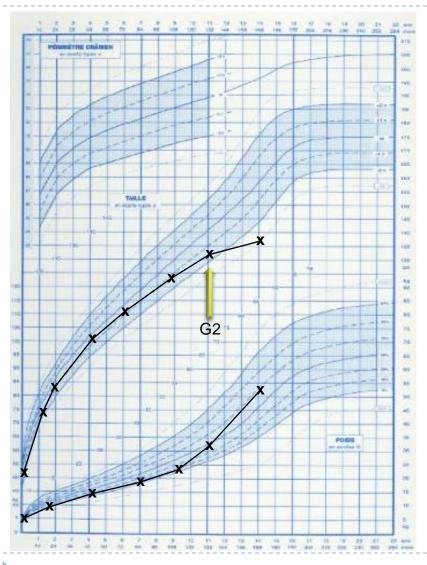

Op' ddd (Lysodren) 2 à 6cp/jour

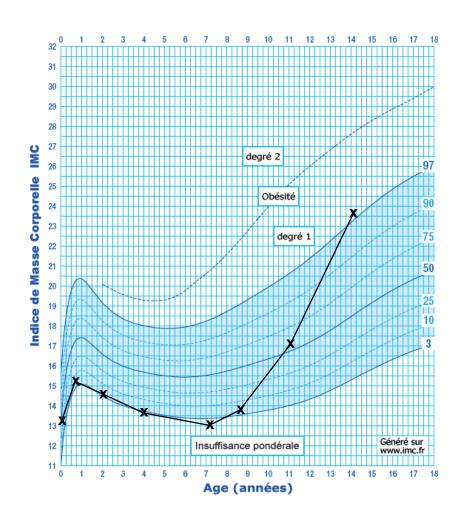
- Tb digestifs
- •Tb neuropsycho (☐ performances scolaires)
- Utiliser la dose maximale tolérable
- •Insuffisance surrénale
- Surveillance IRM



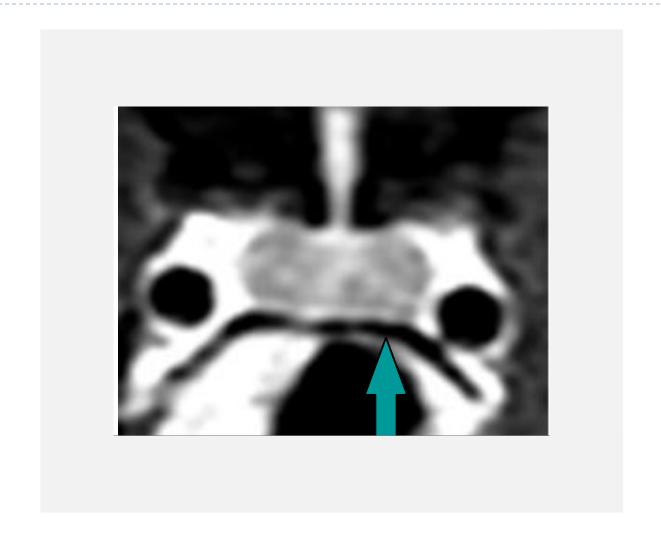
- Avant traitement
- Tailles finales

- Avant traitement
- Tailles finales



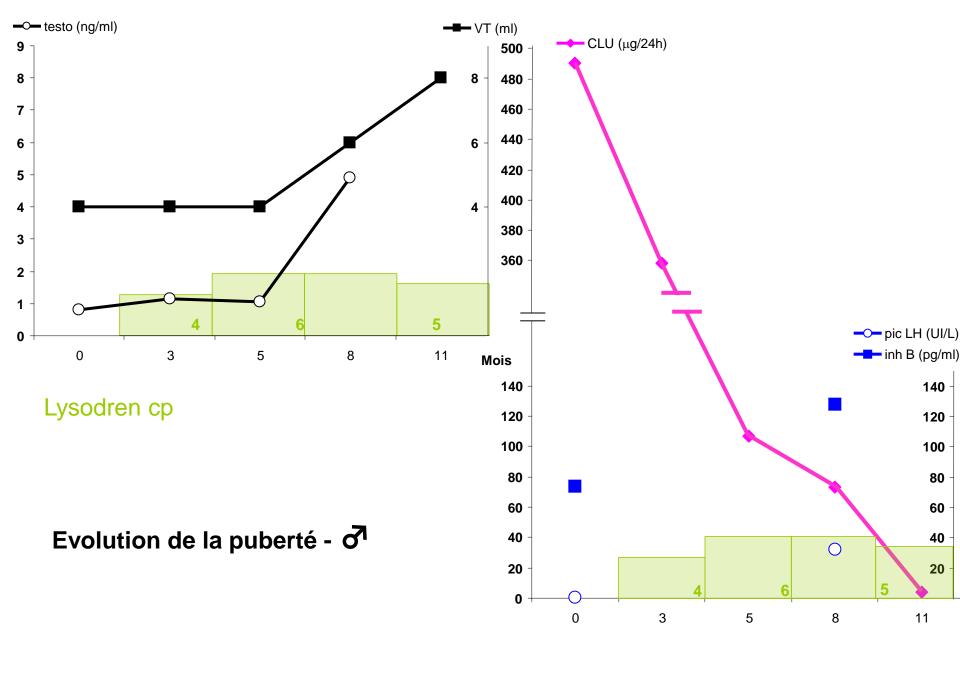

Croissance pubertaire et Cushing

- Le traitement permet la reprise de la croissance
- Mais pas de rattrapage
- Maturation osseuse par les androgènes surrénaliens avant le diagnostic
- Développement pubertaire dés la normalisation de la sécrétion de cortisol

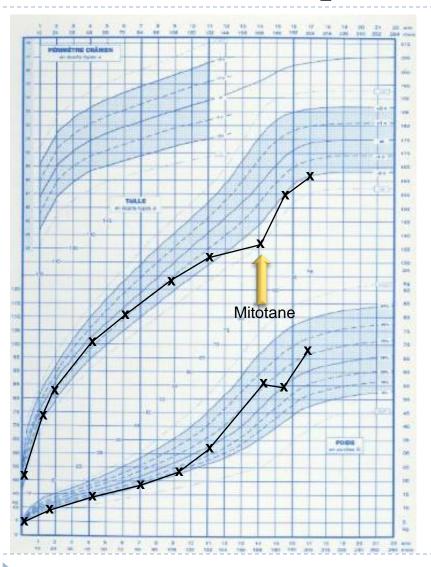

- Associer de l'hormone de croissance même en l'absence de déficit (fin de puberté, maturation osseuse déjà bien avancée)
- Discussion freinage pubertaire (GnRHa)
- > OP'ddd
- Inhibiteurs de l'aromatase?

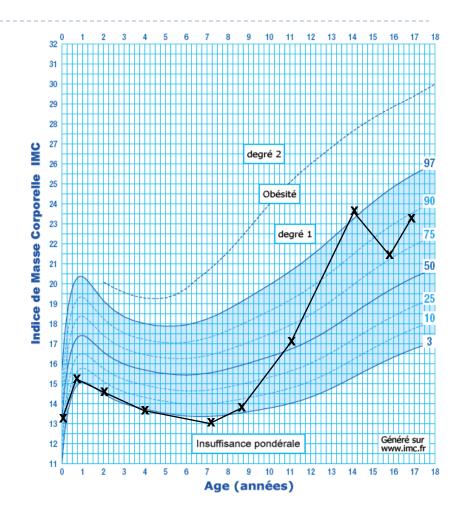
Consulte pour retard statural et pubertaire

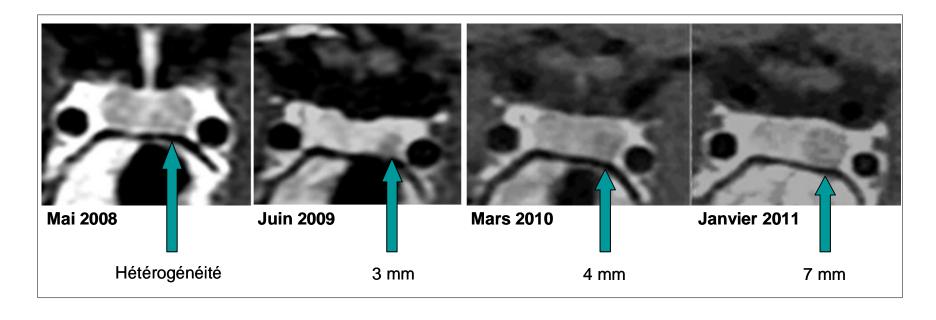
IRM hypophysaire



Hypercorticisme ACTH-dépendant évident

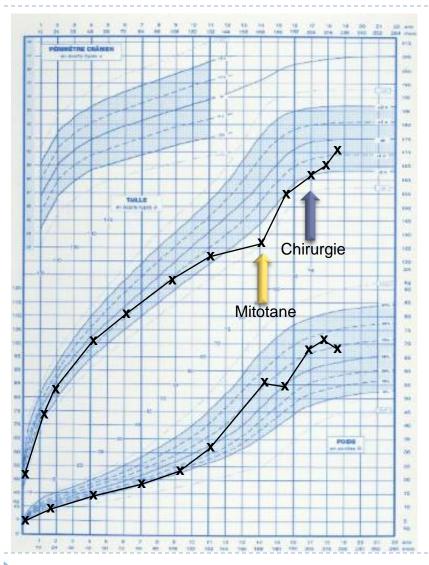

Cortisol libre urinaire	377 μg/24h
Cortisolémie à minuit	22,7 μg/dl
ACTH	77 pg/ml
Test au CRH	Pic d'ACTH 147 pg/ml

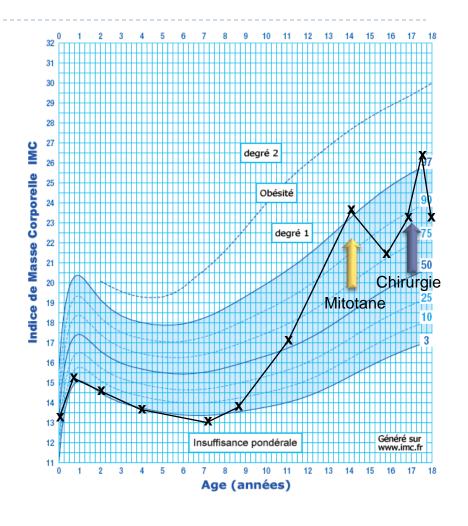

- Pas d'image nette à l'IRM
- Etat général relativement conservé
- → Décision de traitement médical de première intention

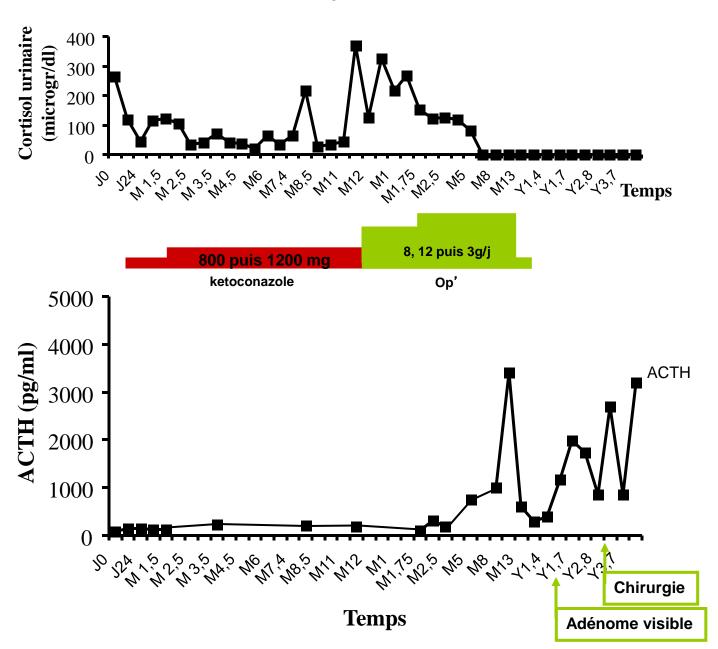

Efficacité clinique

Reprise d'une puberté évolutive

Apparition progressive d'un adénome hypophysaire visualisable

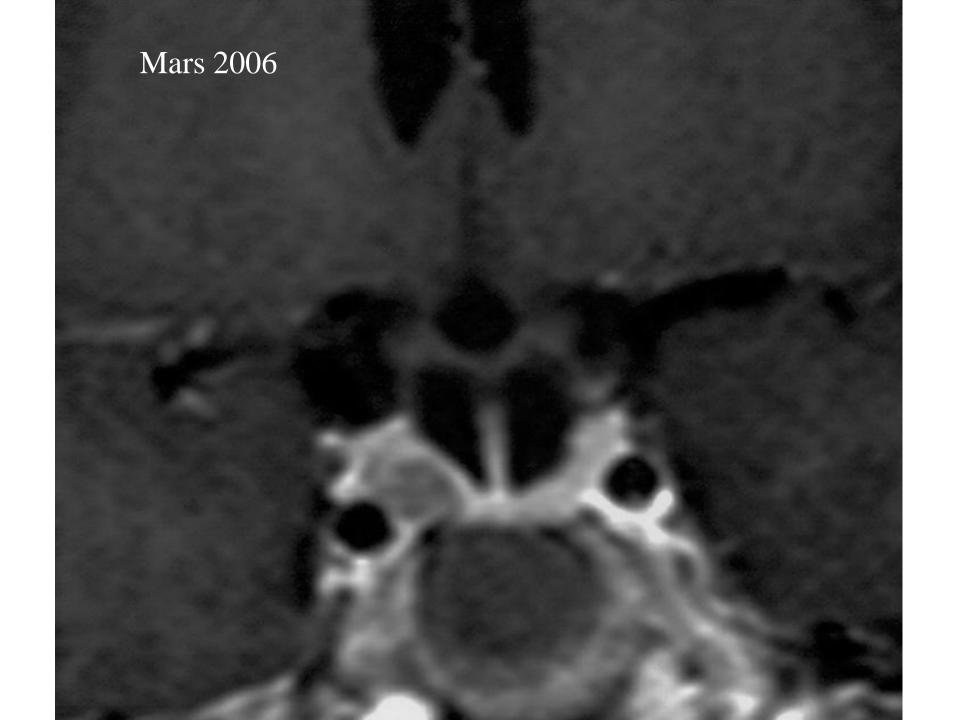



Evolution post-chirugicale


- Insuffisance corticotrope en post-opératoire immédiat (meilleur signe de chirurgie efficace)
- Toujours en insuffisance corticotrope à 1 an de la chirurgie
- Pas d'autre atteinte ante-hypophysaire
- Pas de diabète insipide
- Puberté achevée pic de croissance satisfaisant

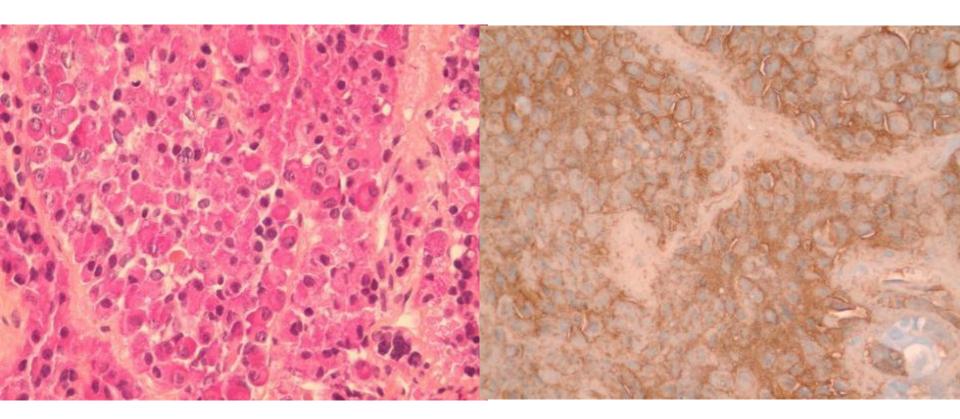
Efficacité clinique

Mai 2006: 23 ans


- P 57 kg T 1m55 IMC 24 TA 120/60 mmHg
- · Cycles réguliers
- DMO: Tscore L1-L4 0,2

Fémur total - 1,3

Trt: Hydrocortisone[®] 30 mg, Adixone[®] 50 μg

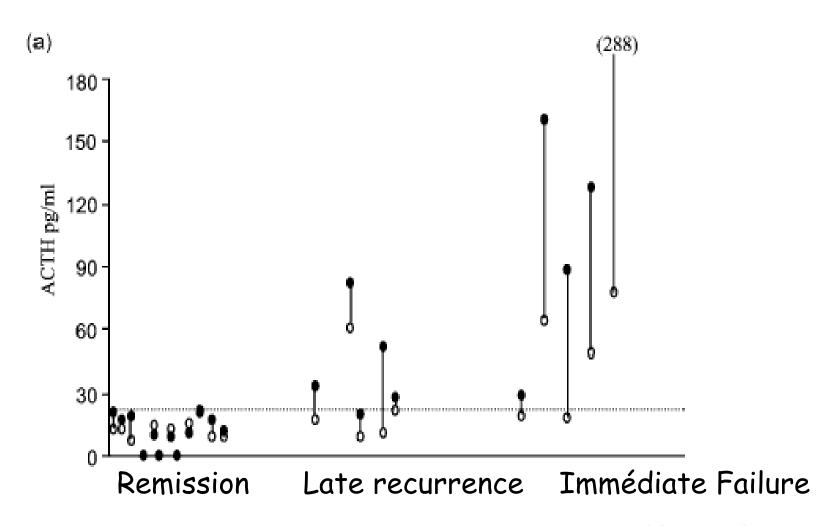

F sérique 8h < 10 ng/ml, F salive 8h < 0,4 ng/ml Rénine : N

Minirin	-30	0	+15	+30	+45	+60 min
ACTH pg/ml	853	744	3228	2003	1295	977

Chirurgie hypophysaire

Adénome corticotrope

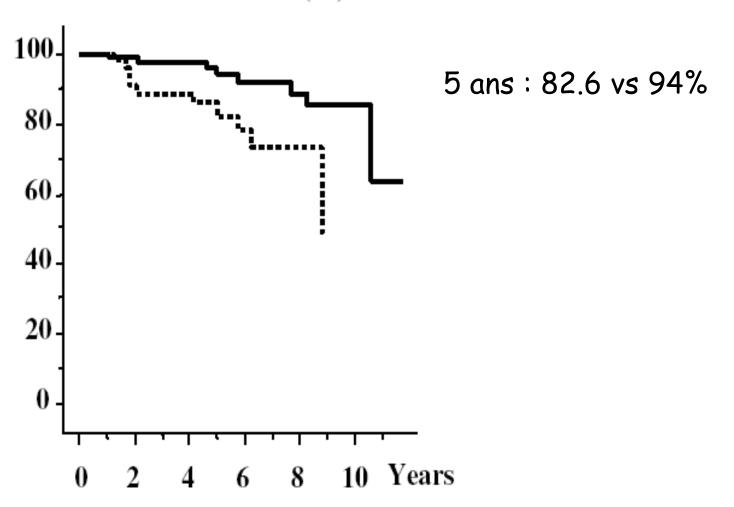
Les questions se posant à la transition


- ☐ Maladie de Cushing:
 -insuffisance surrénale: substitution
 -risque de récidive du syndrome de Cushing?
 -progression tumorale corticotrope?
 ☐ Les complications du syndrome de Cushing:
 -stabilisées?
 -risque évolutif à long terme?
- □ Autres fonctions hypophysaires:
- -substitution si déficit
- -contraception
- □ Risque génétique ?

Les questions se posant à la transition

```
☐ Maladie de Cushing:
-insuffisance surrénale : substitution
-risque de récidive du syndrome de Cushing?
-progression tumorale corticotrope ?
☐ Les complications du syndrome de Cushing:
-stabilisées ?
-risque évolutif à long terme ?
□ Autres fonctions hypophysaires :
-substitution si déficit
-contraception
```

☐ Risque génétique ?

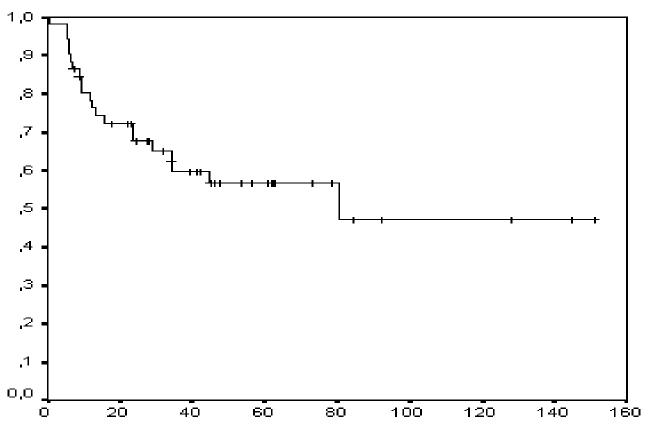

Récidive : Intérêt du test Minirin / Dex-Minirin (1)

Valéro et al, EJE 2004

Récidive : Intérêt du test Minirin / Dex-Minirin (2)

Recurrence-free survival (%)

Losa et al, JCEM 2009


Les questions se posant à la transition

```
☐ Maladie de Cushing:
-insuffisance surrénale : substitution
-risque de récidive du syndrome de Cushing?
-progression tumorale corticotrope?
☐ Les complications du syndrome de Cushing:
-stabilisées ?
-risque évolutif à long terme ?
□ Autres fonctions hypophysaires :
-substitution si déficit
-contraception
```

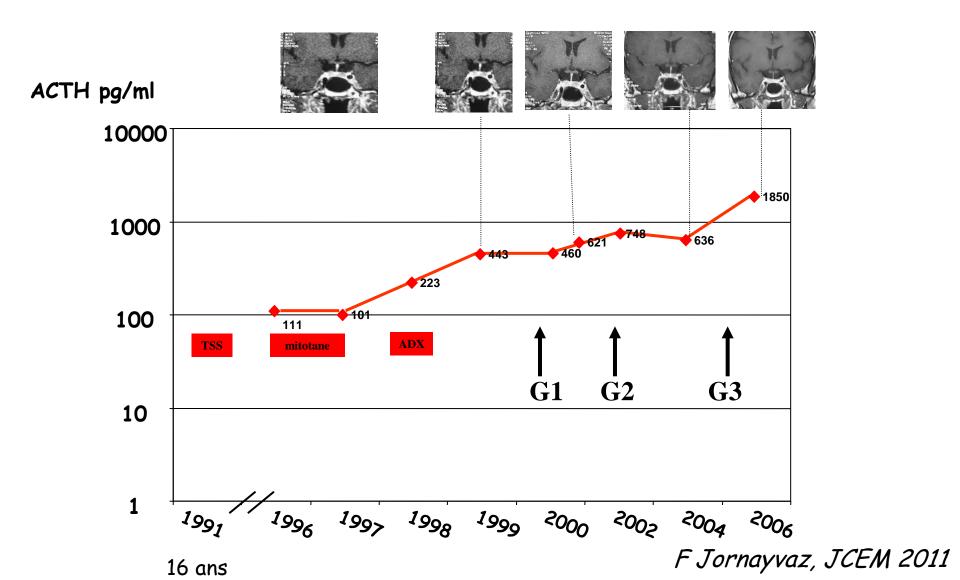
Risque génétique?

Progression tumorale corticotrope définie par l'IRM

N= 52 surrénalectomie bilatérale entre 1989 et 2002 patients sans progression tumorale

mois après la surrénalectomie bilatérale

G Assié, et al, JCEM 2007


Progression tumorale corticotrope

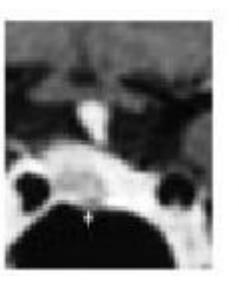
Surveillance IRM

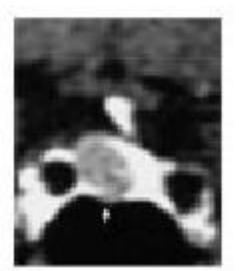
Syndrome de Nelson

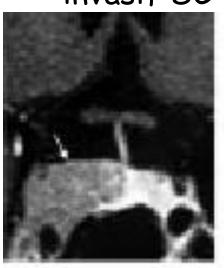
		\ /							_				· ·	
	Sol		92	3,6	41927	& .	f 1983	પુર	1961	1984	986	e 1993	995	000000
	48.50 A	Emes	(1927)	OMON OMON	Coper 197	Kasperi:	Kelly 1.	Thomas .	Nanor 1984	Ser Nate	NCG3.	Jenkin	1/3/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	7063-2000
Pigmentation	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Visual defect	0	1/4	2/11	2/8	3/8	6/14	2/11	1/4	1/6		4/9	4/11	4/10	31
Ophtalmo- plegia	0										1/9			11
Tumor Necrosis	1/52	1/4				2/14								16
Death (related)	0									1				?
Cancer	0		1/11			1/14								8

La grossesse n'accélère pas la progression tumorale corticotrope

La grossesse n'accélère pas la progression tumorale corticotrope


 Pente évolutive avant grossesse = autour grossesse = après grossesse


	Before pregnancy		A	round pregnancy	A.			
	Median	Range	Median	Range	Р	Median Range		Р
Corticotroph tumor volume variation								
Absolute (mm³/yr) Relative (%/yr)	2.95 0	0 to 294 0 to 1,417	0 0	−17 to 1,381 −11 to 915	0.612 0.063	0 0	0 to 9.3 0 to 41	0.317 0.317
ACTH variation Absolute (pg/ml·yr) Relative (%/yr)	279 90	-25 to 3,126 -28 to 1,255	177 43	−264 to 12,598 −30 to 223	0.889 0.123	233 46	-25 to 1,512 28 to 109	0.068 0.465


P values are provided for comparison with before pregnancy values.

Risque de syndrome tumoral pendant ou au décours de la grossesse

- Volume tumoral faible
 à distance chiasma et SC
- Volume tumoral important
- +/- expansion suprasellaire invasif SC

21 mois après l'accouchement:

- -Céphalées
- -Ophtalmoplégie
- -Douleur V1
- -panhypopituitarisme

Jornayvaz et al, JCEM 2011

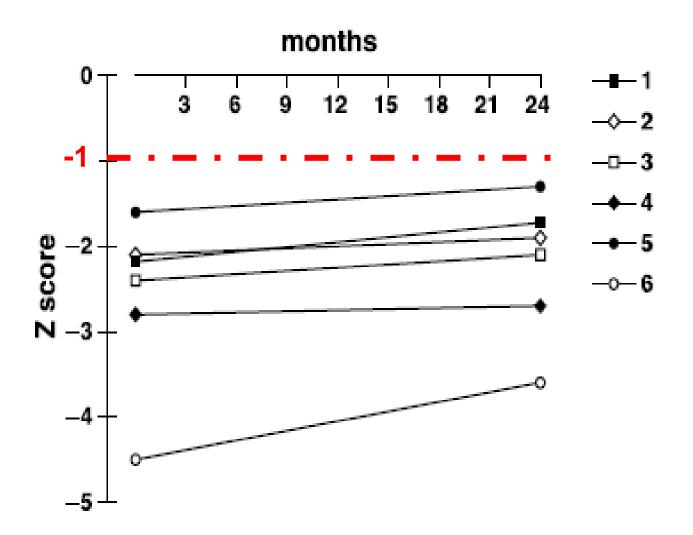
Les questions se posant à la transition

☐ Maladie de Cushing: -insuffisance surrénale : substitution -risque de récidive du syndrome de Cushing? -progression tumorale corticotrope ? ☐ Les complications du syndrome de Cushing: -stabilisées ? -risque évolutif à long terme ? □ Autres fonctions hypophysaires : -substitution si déficit -contraception

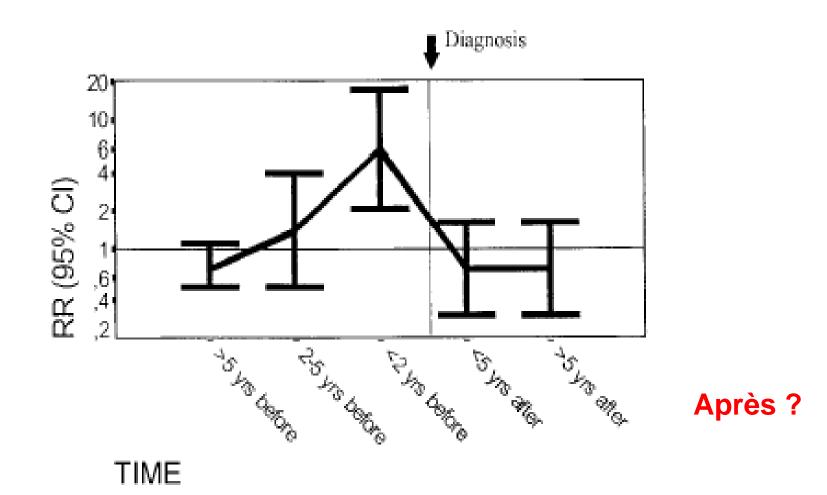
Risque génétique?

Séquelles après guérison du syndrome de Cushing


B

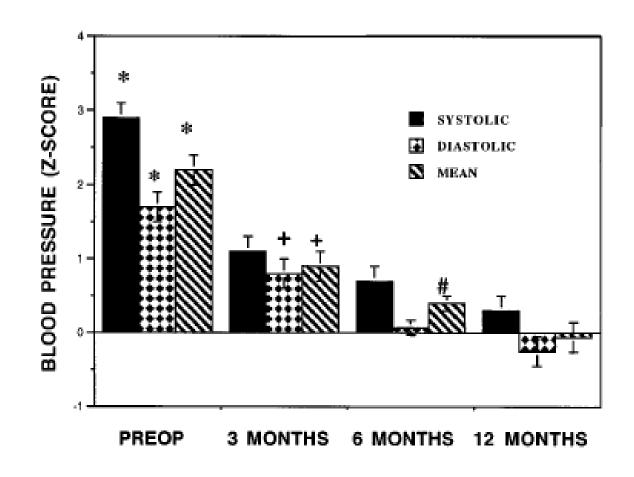


Séquelles après guérison du syndrome de Cushing



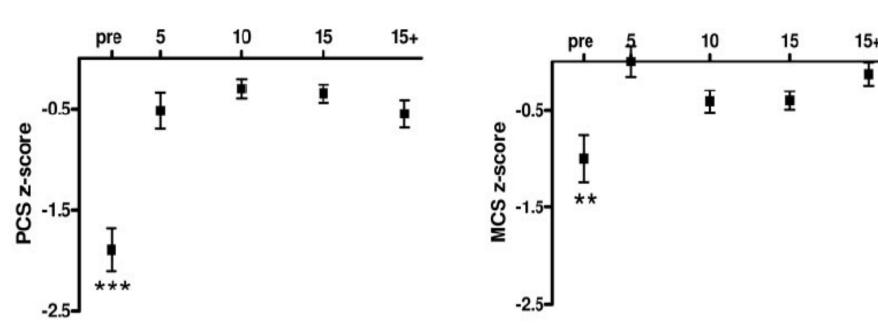
Leong et al, JCEM 1996

Evolution de la masse osseuse



Evolution du risque fracturaire

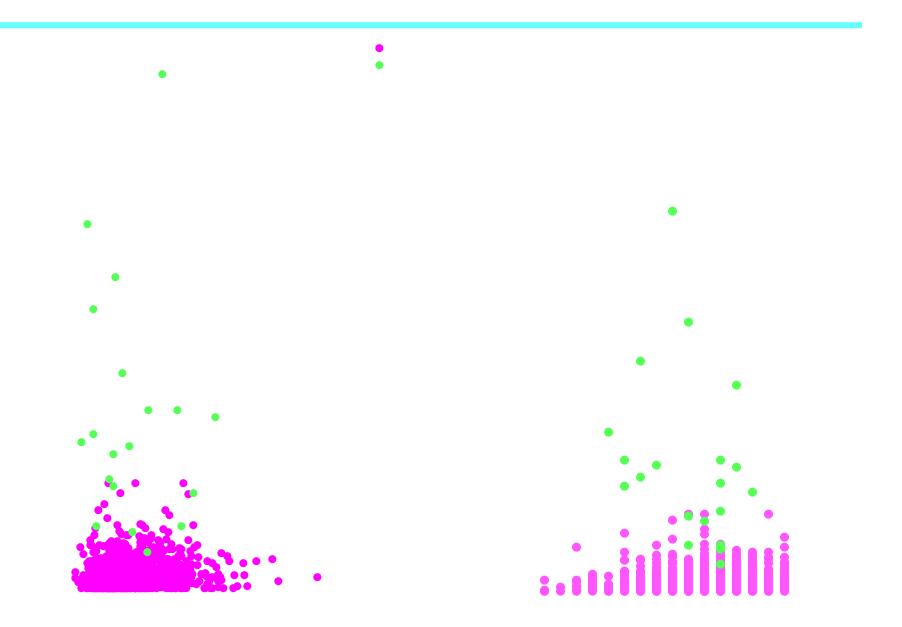
Vestergaard et al, EJE 2002


Blood pressure almost usually normalize after cure of Cushing syndrome in children

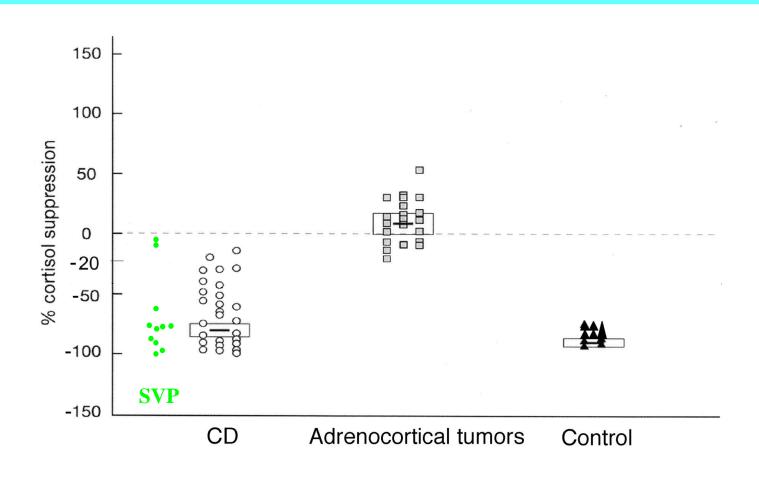
M A Magiakou, J Clin Endocrinol Metab, 1997

Quality of Life (QoL) in Cushing's Syndrome: long term outcome after disease control

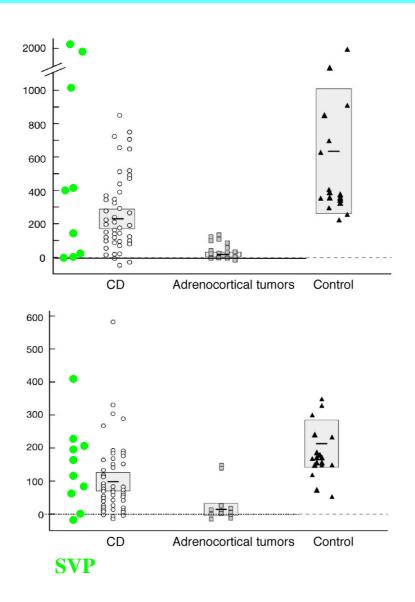
SF-36 in 343 patients (cross-sectional)


PCS: Physical Component Scale

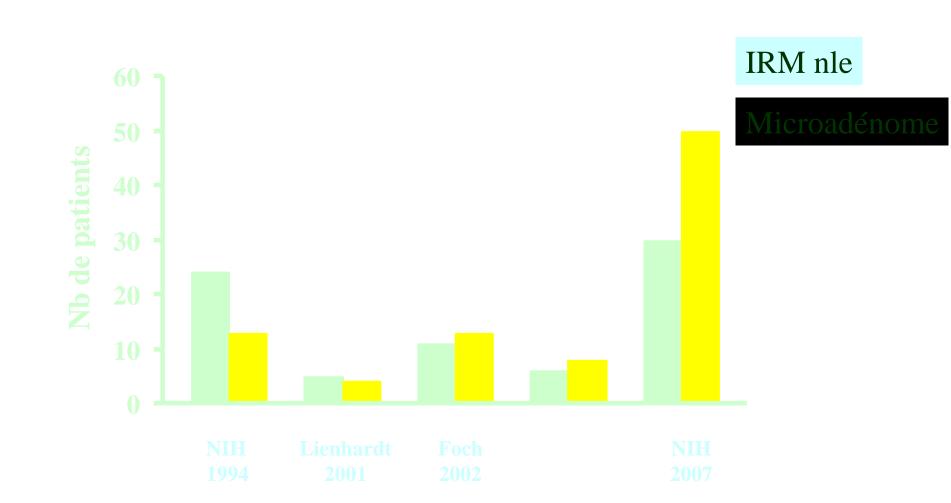
MCS: Mental Component Scale


Persistance des complications séries adultes

Complications	prévalence	références
Obésité	62,5 – 73 %	Colao JCEM 1999 Faggiano JCEM 2003
HTA	25 – 55,6 %	Fallo Am J Hypertens 1996 Colao JCEM 1999 Faggiano JCEM 2003
IHC / diabète	60%	Colao JCEM 1999
dyslipidémie	30 %	Colao JCEM 1999
Risque cardiovasculaire WHO/ ISH	80% haut ou très haut risque	Mancini Clin Endoc 2004
Athérome carotidien	30%	Colao JCEM 1999 Faggiano JCEM 2003
Complications thromboemboliques	0 à 5,6 – 20 % postop	Van Zaane JCEM 2009


Les cortisols libres urinaires

Suppression par la DXM


La réponse au CRF

Les données de l'IRM

Microadénome visible ≈ 50% des cas

